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We provide a general condition for the occurrence of a sudden transition to synchronization in an array of
oscillators mutually coupled via the nearest neighbors. At the onset of synchronization a specific constraint
must be fulfilled: precisely, the response time of a single system to signals from the adjacent sites must be
smaller than the refractory period. We verify this criterion in some models for neuronal dynamics, namely, in
excitable systems driven by noise as well as in chaotic oscillators.
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Under particular conditions coupled systems exhibit co-
herent global behavior by synchronizing their dynamics. Co-
herent oscillations have been discussed in many areas. Win-
free and Kuramoto �1� have shown that synchronization in
globally coupled oscillators is reached suddenly, implying
the existence of a phase transition. This discovery motivated
many physical models to describe the synchronization of
neuronal activity as the coordinating mechanism for feature
binding �2�, whereby spatially segregated processing areas
are bound together to provide a coherent percept �3�. Due to
the rapid onset of feature binding �4�, neural synchronization
shares aspects specific of a bifurcation or a phase transition,
when driven by noise.

A sudden transition to synchronization, often referred to a
phase transition, was found in many types of globally
coupled systems, from phase rotators �1� to models of burst-
ing neurons �5� and chaotic oscillators �6�. However, the glo-
bal �all-to-all� coupling is a conceptual abstraction which has
no anatomical correspondence in the brain wiring. Recently,
a few cases of a sudden transition to synchronization in a
locally coupled system have been reported. These are a large
network of locally pulse coupled oscillators �7�, locally
coupled chaotic maps �8�, and oscillators exhibiting ho-
moclinic chaos �9�. At variance with global coupling, a lo-
cally coupled system does not generally display a sudden
transition to synchronization but with a very few exceptions.

The aim of our study is to provide a general criterion for
the occurrence of a bifurcation during a sudden transition to
synchronization in locally coupled oscillators. We prove that
in such a case the bifurcation occurs when a specific con-
straint is fulfilled, namely, as soon as the generation time
becomes smaller than the refractory period. We verify this
criterion in nonautonomous excitable systems driven by
noise as well as in autonomous chaotic oscillators. The im-
portance of a refractory period has been shown in some ex-
perimental studies provided recently �10�. The macaque vi-
sual area V4 displays two types of active neurons during
attention. They have different refractory periods ��200 ms
and �200 ms� and are called narrow and broad spiking neu-
rons, respectively.

Let us first consider a one-dimensional array of coupled
Adler systems �11�,

ẋi = � − cos xi + Di�i + ��
j�n

sin�xi+j − xi� , �1�

where n= �−1,1� for the bidirectional coupling. The variable
xi is a dimensionless angle �modulo 2�� and � is a control
parameter. For ����1, there are two fixed points at x�

= �arccos �, one being a stable focus �x−� and the other an
unstable saddle point x+. If ����1, there are no fixed points,
and the flow consists of an oscillation of the variable x. This
limit cycle develops through a saddle node on an invariant
circle �Andronov� bifurcation at �= �1, where the two fixed
points collide and annihilate. For ����1, the system displays
excitable behavior. �i is a Gaussian white noise source of
amplitude Di. We consider the case where only the first site
in the array is excited by an external forcing �Di=0.5 for i
=0�, meanwhile the other units are excited by mutual inter-
actions. The amplitude Di is chosen in a such way that it
triggers irregular spiking at the first site. It is worth noting
that such an excitation can propagate in an array as soon as
all Adler units are set with system parameters in an excitable
dynamical regime. We use open boundary conditions.

In Fig. 1 we show the space-time positions of the spikes
for different values of the coupling strength. For �=0.75
�Fig. 1�a�� an array slightly synchronizes, but rather random
clusters are formed. For �=1.05 �Fig. 1�b�� we observe the
emergence of synchronization, that means that the perturba-
tion from the first site propagates through the whole array,
reaching after some time the last site. By “synchronized” we

FIG. 1. Space-time position of the spikes for 40 bidirectionally
coupled Adler systems with �=0.97 and the coupling strength �a�
�=0.75 and �b� �=1.05.
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do not mean “isochronous,” in which case the space-time
plot would be a collection of strictly horizontal lines, but
rather that adjacent sites have spikes separated by a fixed lag
time.

We observe that the transition to synchronization is not
continuous as the control parameter, in our case the coupling
strength �, is varying. To describe quantitatively these abrupt
changes we characterize the degree of order in the system by
means of entropy S. It is calculated from the distribution of
the generation times Tg in the time series, far beyond the
initial transient. We define the generation time Tg as the time
difference between spike occurrences at neighboring sites.
When the coupling is zero, this distribution is flat, i.e., the
information on a site gives no information on the other ones.
Increasing the coupling, we observe the birth of peaks for
fixed time differences, due to the time correlation between
spikes at adjacent sites. The entropy S is defined as

S = − �
Tg

��Tg�ln ��Tg� , �2�

where ��Tg� is the discrete probability distribution �histo-
gram� of a continuous variable Tg. An additional constant
contribution, ln 	Tg, depending on the discretization step
	Tg, is not included in the definition of S, since it contributes
an irrelevant constant shift. In Fig. 2�a� we plot entropy ver-
sus coupling strength in the case of the bidirectionally
coupled Adler systems. Above the critical value of the cou-
pling �c=0.75 we observe a discontinuous change in the en-
tropy value, thus suggesting the existence of a bifurcation.

For small coupling strength the firing excited at the first
site by noise cannot propagate through the array, thus the
entropy does not exist �there is no data to analyze�. Now, the

interesting observation is made when studying the unidirec-
tional coupling �n= �−1��. In Fig. 2�b� we observe the mono-
tonic decrease of the entropy as the coupling strength � in-
creases. No sharp transition is observed in this case. This
observation suggests that the feedback effects in the case of
bidirectional coupling makes synchronization difficult to es-
tablish, since additional firings in the two directions may be
induced. We notice that these additional firings disappear as
soon as the generation time becomes smaller than the refrac-
tory period. The refractory period Tr is the time fraction of
each cycle during which the system is insensitive to an ex-
ternal perturbation. Thus we state that the above condition is
responsible for the occurrence of bifurcation. It is interesting
to note that in the case of coupled Adler systems in the os-
cillatory regime �����1� with randomly distributed frequen-
cies, the bifurcation is absent, indeed �Fig. 2, right panel� the
transition to synchronization has no sudden change in en-
tropy. The probability distribution in the case of periodic
systems is calculated by considering Tg as a phase difference
between adjacent oscillators. The lack of bifurcation is due to
the fact that the single units of an array do not contain any
refractory period.

To prove our statement we plot in Fig. 3 the change of the
generation time distributions for different coupling strengths,
below and above the critical value �c. Slightly above �c, the
generation time Tg become smaller than the refractory period
Tr �marked by the vertical dashed lines�. Tr is defined as the
minimum value of time after which the second firing can be
generated. In the case of Adler system with �=0.97 it is Tr
=2�−2�arccos ��=5.8. In Fig. 3�a�, Tg has a nonzero distri-
bution for Tg�Tr �region B�. The generation times included
in B induce additional firings with negative generation times
�peak A�. In Fig. 3�b�, where � is slightly above �c, the region
B vanishes completely, thus all Tg result to be smaller than
Tr. Vanishing of region B induces the sharp decrease of the
peak A toward A� �Fig. 3�b��. This is related to the fact that
the feedback is no longer operating and the activation of sites
cannot propagate in the opposite direction �defined by nega-
tive generation times�. The different propagation direction
appearing in an array can be read from Fig. 1�a�. This obser-
vation provides information on the influence of the feedback
in the bidirectional coupling. When the generation time Tg on
site i is larger than the refractory period on site i−1, then the
site i can induce successively the second spike on site i−1.
As the generation time decreases, the excitation of the suc-

FIG. 2. Top panel: entropy versus coupling strength � for 40 �a�
bidirectionally and �b� unidirectionally coupled Adler systems. Bot-
tom panel: entropy versus coupling strength � for the case of 40
coupled Adler systems being in the oscillatory state.

FIG. 3. Coupled Adler systems. Distribution of the generation
times Tg for the coupling strengths �a� �=0.75 and �b� �=0.81.
Dashed lines: refractory period Tr.
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cessive spikes becomes impossible and the effect of the bi-
directional coupling vanishes; the array reduces to the unidi-
rectional one. In fact, in the case of unidirectional coupling
even for small coupling strengths the excitation from the first
site propagates easily only in one direction.

Based on the previous considerations we state that the
necessary condition for the bifurcation is that for some small
coupling strength some part of the generation time distribu-
tion be larger than the refractory period. In order to estimate
analytically the condition for the occurrence of a bifurcation
we consider the Adler system under the effect of a single
perturbation I�t�=�
�t− t0� acting at time t0, where the 

function is an idealization of the pulses coming form the
neighboring sites. The effect of this perturbation appears
only as a discontinuity of the x�t� variable at time t0 as
x�t0

+�=x�t0
−�+�. The condition for the perturbation to be

larger than the excitability threshold is that x�t0
+��x+, where

x+ is the unstable fixed point of Eq. �1�. We set the initial
condition to be in the rest state, x�t0

−�=x−, where x− is the
stable fixed point of Eq. �1�, such that the minimum value for
the amplitude in order to excite a pulse is ��2arccos � and
the system develops a pulse after a certain Tg. This time is
defined as the time it takes x�t� to reach a given reference
value, e.g., xr=� /2. From Eq. �1� for the uncoupled Adler
system with D=0 we have Tg=	x�t0

+�
�/2 dx

�−cos x . If for any � the

condition

Tg =
1


1 − �2
ln� �1 − b��b−1 tan

x�t0
+�

2
+ 1

�1 + b��b−1 tan
x�t0

+�
2

− 1� � Tr �3�

with b=
1−�
1+� is satisfied, then the bifurcation will occur as

� increases. We also checked the relation between Tg and
Tr in FitzHugh-Nagumo system �12� being in an excitable
regime. We find, both by analytical calculations and numeri-
cal simulations, that in this system Tg�Tr for all system
parameters. This fact prohibits the appearance of the bifur-
cation that we observe in the Adler system.

Furthermore, we show that the bifurcation can appear in
coupled chaotic maps with an artificially introduced refrac-
tory period. The one-dimensional array of bidirectionally
coupled chaotic maps is defined as follows:

xi
n+1 = a1xi

n + a2�xi
n�2 + ��yi+1

n + yi−1
n − 2yi

n�, if xi
n � 1,

xi
n+1 = b�xi

n − 1� + c, if xi
n � 1, �4�

where a1, a2, b, and c are constant parameters. b is a squeez-
ing factor which reinjects the dynamical point close to the
origin, whenever x becomes greater than 1. Variable y takes
two values, 1 whenever x crosses 1, and 0 elsewhere; this
leads to the coupling scheme of pulse type. In order to ac-
count for the refractory region when a spike is generated, the
variable x is frozen for Tr steps, then it restarts its cycle.

We evaluate the distributions of the generation times and
calculate the corresponding entropy as a function of � for
different values of Tr. We find that the slope suddenly de-
creases above �c, i.e., the intersite correlations rapidly in-

crease, indicating the beginning of synchronization between
the map units. In Fig. 4, the entropy of the time difference
distribution is reported for some values of the parameters.
For convenience, in Fig. 4 we have vertically translated the
curve �b� with respect the other ones to avoid overlaps.
When we set the refractory period to zero the bifurcation
does not occur at all. It is worth noting that the sharpness and
the value of critical coupling strength value of the onset of
synchronization may also depend on the grade of fluctuations
existing in the system �13�.

With the use of a simple excitable system as well as cha-
otic maps with artificial refractory period we have shown
that Tr plays a crucial role in the synchronization process.
This provides an explanation for the occurrence of a bifur-
cation in the bidirectionally coupled systems exhibiting ho-
moclinic chaos �HC�. As reported in �9�, the sudden transi-
tion to synchronization occurs at the critical value of the
coupling strength �c �see Fig. 5�a��. Following the same con-
siderations as in the case of the Adler system, we notice that
again the bifurcation occurs when all Tg become smaller than
Tr of a single HC unit. In this case, Tr is defined as the region
of low susceptibility to the external stimulus. In Fig. 5�b� we
calculate numerically the susceptibility in all regions of the
phase space for the HC system �with parameters as in Ref.
�9�� and obtain a refractory period of the order of Tr�30.
The high values of the correlation r correspond to the low
susceptibility of the HC system. The correlation r at time t is
evaluated between the perturbed time series xt and the unper-
turbed one x, both starting from the same initial conditions.
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FIG. 4. Coupled chaotic maps with a1=1.001, a2=0.3. Entropy
versus � for �a� b=0.03 and �b� b=0.1. For �a� the three values of
Tr, 50, 75, and 100, are considered. For �b� Tr is equal to 100. The
vertical lines correspond to the values of � for which Tr=Tg.

FIG. 5. �a� Entropy S versus coupling strength � for 100 bidi-
rectionally coupled HC systems. �b� Correlation r �solid line� and
unperturbed time series �dotted line and out of scale� versus time t.
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An external perturbation is applied at time t where r is evalu-
ated. The correlation r is defined as

r�t� =

1

T
�

t

t+T

dt̄xt�t̄�x�t̄� − x̄tx̄

sts
, �5�

where xt�t̄� and x�t̄� are dynamical variables, x̄t and x̄ are
temporal averages over interval T, and st and s are the stan-
dard deviations of xt and x, respectively. T is of order of an
average interspike interval of the HC system. In Fig. 6 we
plot the distributions of Tg for two coupling strengths, below
and above the critical value �c=0.13. We observe that
slightly above �c the generation times Tg become smaller
than Tr. In Fig. 6�a� Tg has a non-zero distribution for

Tg�Tr �marked by B�. The generation times included in B
induce additional firings with negative generation times
�marked by A�. In Fig. 6�b�, where � is set slightly above �c,
the distribution at B vanishes completely, thus all Tg are al-
ways smaller than Tr. Vanishing of B induces the sharp de-
crease of A toward A� �Fig. 6�b��. As in the Adler system,
also in HC the feedback interaction is no longer active and
the activation of sites cannot propagate in the opposite direc-
tion �defined by negative generation times�.

In conclusion, we have explored the role of the interplay
between generation times and refractory periods on the co-
operation between locally coupled oscillators leading to glo-
bal synchrony. We have shown that in a one-dimensional
array with a finite refractory period, a bifurcation during
transition to synchronization occurs at a critical value of the
coupling strength when a specific constraint is fulfilled,
namely, once the generation times become smaller than the
refractory period. On the contrary, globally coupled systems
undergo a sudden transition even in the absence of a refrac-
tory period, thus for them our criterion is irrelevant. Due to
the sparse �even though not just nearest neighbors� coupling
of neurons, we show that the criterion here discussed may be
an important ingredient to explain the sudden appearance of
a coherent perception.
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FIG. 6. Distribution of the generation times Tg in 100 HC
coupled system for the coupling strengths �a� �=0.08 and �b� �
=0.14. Dashed line marks the refractory period.
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